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Abstract--An alternative to perturbation techniques or full numerical solution is developed for the 
free-surface problem associated with an advancing liquid-gas contact line. The method, which makes use 
of a local-wedge approximation to obtain the free-surface pressure variation, leads to a second-order 
ordinary differential equation for the meniscus shape. Both analytical considerations and comparisons 
with available full numerical solutions for capillary tubes confirm the validity of the meniscus equation 
up to values of the capillary number (Ca) of order 10- ~. At higher Ca the equation retains its validity 
in the wall region, for which an approximate analytical solution is derived. Matching of this solution with 
the central circular meniscus profile leads to an analytical approximation for the advancing contact angle, 
which compares excellently with available data (Ca up to an order 1). In contrast with preceding analyses, 
the classical approximations--in particular, that of no slip---are assumed to retain their validity up to the 
order of a molecular dimension from the wall, at which point the true contact angle is reached. While 
this angle is again supposed to be equal to the static value, this assumption is not critical to the dynamic 
angle predicted. 
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1. I N T R O D U C T I O N  

In macroscopic static systems involving three-phase contact lines the contact angle constitutes an 
essential boundary condition, whose value on smooth, chemically homogeneous solids depends 
only on the media involved and not on system parameters. 

It is appealing to extend the concept of contact angle to the dynamic case, in which the 
three-phase line moves over the solid and the "dynamic" contact angle in the advancing fluid is 
observed to be an increasing function of the line speed. Even in the simplest case, considered here, 
of a viscous liquid steadily displacing a gas, one of the problems encountered is that whatever the 
value of the dynamic contact angle the associated flow field proves to be singular, the pressure in 
the liquid decreasing without limit as the line is approached if the "classical" approximations of 
fluid mechanics are retained: that the liquid is a continuum, possessing a surface tension and subject 
to no slip with respect to the solid. This dilemma does, however, provide the first clue as to the 
origin of the dynamic contact angle, namely that at least part of the deviation from the static angle 
must be apparent rather than real, resulting from deformation of the meniscus in a microscopic 
region close to the line where the pressure in the advancing fluid is very low [for relatively recent 
reviews, see Dussan (1979) and de Gennes (1985)]. The problem of the singularity remains, 
however, the magnitude of the deviation from the static angle being unlimited if the classical 
approximations are retained. It thus appears that the breakdown of one or more of these 
aproximations extremely close to the wall must be taken into account in any complete description 
of the phenomena. 

Even aside from the question of the appropriate wall boundary conditions, the problem of 
finding the meniscus shape is a difficult one and most solutions to date are based on perturbation 
techniques, valid only for small values of the capillary number (Ca), ltU/a (a--dynamic viscosity 

*Present address: Hoogovens Research Laboratory, P.O. Box 10,000, IJmuiden, The Netherlands. 

661 



662 w. BOENDER et al. 

of the liquid, U--line speed, a--surface tension): Hansen & Toong (1971), Voinov (1976), Huh 
& Mason (1977), Greenspan (1978), Voinov (1978), Kakfa & Dussan (1979), Neogi & Miller (1982), 
Hocking & Rivers (1982) and Cox (1986). Direct numerical (finite-element) solutions up to a Ca 
of almost 10-~ have, however, been obtained by Lowndes (1980). Of the preceding authors, all but 
Voinov coped with the wall boundary condition by assuming the no-slip approximation to break 
down while retaining the continuum description and the idealization of surface tension. In addition, 
they assumed the true contact angle to remain unchanged and equal to the static value. Lowndes' 
(1980) results exhibited good agreement with the dynamic contact angles measured by Hoffman 
(1975) if the size of the region in which slip was significant was taken to be of the order of a 
molecular dimension (1 nm). This result suggests of course that non-continuum effects are likely 
to be significant, if not dominant. 

The primary contribution of the present paper is to develop an alternative approximation to 
perturbation techniques for the solution of the advancing meniscus shape in that domain of 
the wall region in which the classical approximations apply. The approach is based on the 
solution of the creeping flow and pressure field in the case of a free surface of constant inclination 
(Moffatt, 1964). This solution should be locally applicable, even at large values of Ca, provided 
the actual inclination changes only slowly (in some appropriate dimensionless sense), much as the 
Poiseuille equation for pressure drop in a tube would be, provided the tube diameter changed 
slowly. This approach yields a second-order ordinary differential equation for the meniscus shape 
which can either be solved numerically or, with the help of suitable further approximations, 
analytically. 

To make use of the resulting meniscus equation to predict dynamic contact angles some 
assumption is again required as to the wall boundary condition. In contrast with preceding authors, 
excepting Voinov, the possibility is explored that the continuum, rather than the no-slip, 
approximation must be abandoned. Specifically, the classical approximations are supposed to apply 
up to a distance from the wall of the order of a molecular dimension, at which point the wall has 
been reached and with it the true contact angle. Like previous authors, the simplest assumption 
is made regarding the true contact angle--that this angle remains unchanged and equal to its static 
value. This assumption, which has been challenged by various authors (e.g. Hoffman 1983), is not 
however as critical as it might seem, since even a considerable line-speed-dependence of the true 
angle proves hardly to affect the dynamic angle in the advancing case. 

In section 2 the meniscus equation is derived for the plane-symmetric case, which should 
apply in all systems at distances from the wall which are small in comparison with the system 
length scale and conceivably over the entire meniscus in the case of a parallel-plate geometry. The 
effect of curvature in a plane perpendicular to the flow is then included (section 3), extending 
the equation to flow in a capillary tube. In the following two sections numerical solutions of 
these equations are presented for plane-parallel and axi-symmetric cases. In section 6 the 
axi-symmetric solutions are compared with the finite-element results of Lowndes (1980), 
agreement being required except in a region of molecular dimensions adjacent to the wall, 
where the different boundary conditions (slip vs a non-continuum assumption) should make their 
presence felt. 

The broad credentials of the meniscus equation having been established, attention is now 
directed to its solution with the help of approximate analytical techniques, leading to an analytical 
approximation for the advancing dynamic contact angle. The first step in this process (section 7) 
is to derive a solution of the plane meniscus equation (valid in the wall region) in the small-Ca 
limit. This solution is then shown to provide a good approximation at all Ca if Ca is replaced by 
f(Ca), where f is a simple function reducing to Ca in the small-Ca limit. The accuracy of this 
solution is checked by comparison with direct numerical integrations of the original meniscus 
equation. To arrive at predictions of the dynamic contact angle, the analytical solution for the wall 
region must now be matched with the approximately undeformed meniscus in the centre of the duct 
(section 8). The simplest matching procedure is found to yield satisfactory results, as indicated by 
a comparison with Hoffman's (1975) measurements of advancing dynamic angles (up to Ca of 
order 1: section 9). This comparison also provides a check on the expectation underlying the model: 
that the value of the distance at which the wall is effectively reached should be of the order of a 
molecular dimension. 
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2. T H E  S H A P E  OF AN A D V A N C I N G  M E N I S C U S  B E T W E E N  
P L A N E - P A R A L L E L  P L A T E S  

The stream function P of  a creeping liquid flow in a plane wedge, with a constant velocity U 
prescribed on one boundary and a free surface (zero shear stress) on the other, has been given by 
Moffatt  (1964), in the coordinates 0 and p, as 

0 cos 0 sin 0t - ~ cos ct sin 0 
= Up sin ~t cos ~ - ~t ' [1] 

where 0t is the angle of  the wedge (see figure 1). The corresponding deviatoric component  of  the 
normal  stress in the liquid at the free surface is readily shown to be zero, while the pressure p in 
the liquid varies along the free surface as 

dr ,UA(=) 
d--~ = p2 , [21 

where/z  is the viscosity of  the liquid and 

- 2 s in c~ 

A(~) = sin ~ cos 0t - ~" [3] 

An advancing meniscus between two parallel plates may be described by the coordinates r and tp 
(figure 2). In this case the wedge angle ~p is not constant but varies along the meniscus. However, 
provided that the stresses exerted by the receding gas on the liquid arc negligible (aside from a 
uniform pressure, taken for simplicity to be zero), the flow is assumed locally to resemble that 
in a plane wedge (with 0~ = tp). Morc precisely, the pressure gradient dp/ds (where s denotes arc 
length along the meniscus) will bc approximated by the pressure gradient dp/dp at the free surface 
of the corresponding plane wedge: 

dp _ ~ U a ( ~ )  

ds r 2 [4] 

Denoting the distance to the wall by x (figure 2), [4] may be rewritten as 

dp /z U A (~p)sin ~p 
dx = x 2 [5] 

The normal stress, -p, exerted by the liquid, is balanced by the surface tension a, according 
to Laplacc's law: 

d e  
- p  = ~  : a--~s = a sin ~p , [6] 

. 0 

U m~ 
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Figure I. Viscous flow in a plane wedge bounded by a solid 
with velocity U (0 -- -=) and a free surface (0 --0). 
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Figure 2. Definition o f  variables for an  advancing meniscus. 
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where R is the radius of  curvature of  the meniscus (reckoned positive if the centre of curvature 
lies on the gas side). The derivative of  [6] substituted in [5] now gives 

C a  
1 sin q~ ~ x  ~ , [71 

A (~o)sin ~o 

in which Ca is the capillary number; 

Ca = - -  # U [8] 
17 

The description of  the shape of  a moving meniscus between parallel planes by the ordinary 
differential equation [7] is as good as approximation [4]. The first correction to this approximation 
would involve some dimensionless local curvate of  the wedge, e.g. (dtp/tp)/(ds/w), where w denotes 
the local wedge width (figure 2). Accordingly, [4] may be expected to be acceptable provided 

dip 

__~ <~ 1. [91 
ds 
W 

3. THE SHAPE OF AN A D V A N C I N G  M E N I S C U S  IN A C A P I L L A R Y  

Unlike the case of  parallel plates, the flow behind an advancing meniscus in a capillary tube is 
no longer two-dimensional, though close to the wall (the region where viscous stresses make the 
meniscus deviate noticeably from a sphere) [5] still provides a good description of the pressure 
gradient. Because the meniscus is no longer cylindrical, the pressure behind the advancing meniscus 
is balanced by two radii of curvature: 

- p  = a + [10] 

where Rt is the radius of  curvature in the plane of  figure 3 and R2 in the plane normal to it; 
RI is given (as in [6]) by 

1 d~0 
- -  = sin tp - -  [11] 
RI dx 

and R 2 by 

a - x  

= cos(n - tp) = - c o s  tp, [12] 
- -  R 2 

where a is the tube radius (see figure 3). From [5], [10], [11] and [12] the new meniscus equation 
is obtained: 

d ( dtp + c o s t p ' ~ =  -CaA( tp ) s in tp  [13] 
d--x s i n t p ~  a - x /  x 2 

4. THE N U M E R I C A L  S O L U T I O N  OF THE M E N I S C U S  E Q U A T I O N  
IN THE PLANE CASE 

Equation [7] cannot be valid for all x, since this equation is based on [1] and [6], which treat 
the liquid as a continuum, bounded by an infinitesimally thin surface possessing a tension. While 
this is an acceptable approximation on a macroscopic and microscopic scale, on a "nanoscopic" 
scale, of  the order of molecular dimensions, it is certainly not. The distance from the wall beneath 
which [7] is no longer valid will be denoted by 2. 



APPROXIMATING THE ADVANCING LIQUID--GAS CONTACT LINE 665 

Defining the logarithmic scale of  distance 

[71 becomes 

[ 1 d sin tp 2 ,;2 
.4 (tp)sin tp 2 exp(~) d~ exp(~) d~ exp(2~)' 

while the boundary conditions to be satisfied become 

t p = 9 0  °, atthechannelcentreI~=~¢=ln(;)l, 
and 

[ 1 4 ]  

[15] 

[16a] 

¢p = tp0, at "the wall" (~ = 0), [16b] 

where a denotes the half-width of  the channel and the appropriate values of  ~00 and 2 in any given 
system are at present unknown. Equation [15] is now written as two first-order differential 
equations: 

dip 
-d-~ = r/ [17] 

and 

dr/ r/2 
d--~ = - Ca `4 (~p) + r / -  tan----~" [18] 

Equations [17] and [18] are integrated numerically in parallel using a second-order finite-difference 
scheme and proceeding from assigned values of  ~p and r/at  either the wall or the centre plane of  
the channel. The step size is automatically adjusted to keep the truncation errors in the values of  
Ar/and A m below any required value (typically 10-3%). The initial value of  r/is then adjusted in 
iterative integrations to satisfy the condition at the second boundary. In figure 4 three solutions 
of  the meniscus equation [7] are presented (Ca = 0.1). When integrating from the wall outward it 
is seen from curves 1 and 2, with initial r/0-values of  0.256828 and 0.256840, that the shape of  the 
meniscus far from the wall is highly sensitive to the initial value of  %. When integrating towards 
the wall it appears from curves 1 and 3, with initial r/e-values of  - 0 . 5  and -0 .49 ,  that the meniscus 
shape is much less sensitive to the initial r/e-value. Although the relative difference between the 
initial values of  r/is much greater in the latter case than in the preceding one, the difference in the 
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Figure 3. Advancing meniscus in a capillary o f  radius a. 
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Figure 4. Influence of  initial curvature, q, on the shape of  
the meniscus between parallel plates for Ca = 10-' (%-- 

curvature at the wall, ~c--curvature at the centre). 
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shape of the meniscus is smaller, corresponding to a difference in ~0 of only 2 °. It can be concluded 
that the shape of a moving meniscus close to a contact line is rather insensitive to the exact outer 
boundary conditions. This point is discussed further in section 10. 

5. THE N U M E R I C A L  SOLUTION OF THE MENISCUS EQUATION 
IN THE AXI-SYMMETRIC CASE 

Using, again, the logarithmic scale, [13] becomes 

d I sin ~o dq~ -~ cosq~ ] - Ca A (q~)sin ~ o =  2: [19] 
2 exp ~ d~ 2 exp ~ d~ 2(exp ~ - -  exp ~) exp(2~) 

This differential equation, describing an advancing meniscus in a tube, can again be written as two 
first-order differential equations: 

d~o 
d~ r/ [201 

and 

__ _ _ r/2 r/exp ~ exp(2~) 1 
dr/d~ - Ca A (~o) + r/ - - - tan q~ "~ exp ~c - exp ~ - --tan tp (exp ~c - exp ~):" [21] 

These equations are integrated numerically as in the plane case. The results obtained are compared 
below with the complete numerical solutions of Lowndes (1980). 

The numerical solution in the tube geometry is furthermore comPared with the corresponding 
solution in the plate geometry (figure 5). The difference is very small in this case where Ca = 1. 
For smaller Ca-values the differences may be expected to be still smaller, and for Ca = 0 there will 
be no difference. 

6. COMPARISON WITH COMPLETE N U M E R I C A L  SOLUTIONS 

The shape of an advancing meniscus in a capillary has been computed for a number of cases 
by Lowndes (1980) using a finite-element method. In figure 6 the largest-Ca case treated by 
Lowndes is compared with the results obtained by integration<of [19] from the tube axis to the wall. 
The value of r/at  the axis has been chosen to optimize the agreement with the results obtained by 
Lowndes. 
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Figure 5. Comparison of the meniscus profiles in the tube 
and parallel-plate cases (Ca = 1, ~c = 14, ~0 = 0°) • 
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Figure 6. Comparison of the solution of the axi-symmetric 
meniscus equation [13] ( ) with the results obtained 
by Lowndes (+)  for the highest Ca investigated (Ca = 

7.53 • 10 -2 ) .  
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Before commenting on the comparison, a word must be said about the boundary conditions used 
by Lowndes. As noted earlier, Lowndes assumed the continuum and surface-tension approxi- 
mations to be valid up to the solid surface (x = 0) but the liquid-solid no-slip approximation to 
break down at a distance (the "slip length") of order 10-gm from the contact line. At values of 
x less than or of the order of the slip length the solution obtained by Lowndes may therefore be 
expected to deviate appreciably from that based on a no-slip condition and, accordingly, agreement 
with the meniscus equation [19] is no longer to be expected. For this reason, i was chosen for the 
purposes of comparison to be 10-9m, resulting in a ~c-value of 13.79 for the tube concerned 
(a = 0.978 ram). 

The two meniscus shapes are in good agreement, with maximum differences of the order of 1 °. 
In the smaller-Ca cases of Lowndes the similarity is comparable or better. 

The preliminary conclusion is therefore that the local-wedge approximation looks very promis- 
ing, implying that the requirement [9] is satisfied. This is broadly confirmed by the results obtained 
which indicate that the dimensionless wedge-angle variation rate, I(dqo/tp)/(ds/w)l, is ,~ 1 over the 
greater part of the meniscus for all values of Ca (figure 7). Very close to the wall the local-wedge 
approximation is evidently poor for moderate or large Ca. However, this region constitutes only 
a small part of the zone in which the meniscus is seriously perturbed from the spherical. Very close 
to the axis, the wedge approximation is also poor but this is immaterial except at large Ca, viscous 
stresses in this region being negligible anyway. The problem of modelling the central region at large 
Ca is discussed in section 9. 

7. APPROXIMATE ANALYTICAL SOLUTION OF THE MENISCUS EQUATION 
IN THE WALL REGION 

As the wall is approached the plane meniscus equation [7] must always become a good 
approximation, whether the system geometry is plane or not. This follows from the continual 
decrease in pressure implied by [5], requiring a corresponding increase in curvature in the plane 
of flow, that in the perpendicular plane being limited to values less than, or of the order of, the 
reciprocal of the system length scale, [12]. 

In the present section an approximate analytical solution of [7] is derived for this region, inspired 
by its solution in two limiting cases. The first and most obvious of these cases is that of small Ca 
when the meniscus deviates only slightly from a plane wedge and perturbation approaches are appli- 
cable. An analysis of the error in this approximation, however, provides a clue to the second case: 
that of large cp-values. Both solutions, furthermore, prove to be covered by the same expression. 

The final step is to adopt this expression as an approximate solution in all cases, the reasoning 
being as follows. Large values of Ca provoke large values of c# over most of the wall region so 
that the large-~ solution is likely to provide a good approximation in this case too. This means, 
however, that a single expression provides a good approximation in both the large- and small-Ca 
limits and this expression is then likely to be a good approximation in the intermediate-Ca range 
as well. 

Clearly, the final test is a comparison of the analytical approximation with exact solutions of 
[7] in the wall region and this test is carried out after the derivations concerned. 

The small-Ca limit 

Equation [7] is based on [5], which gives the pressure, p, in the wall region as 

Ix = xt dp . ( xt /,/U,¢~ ( ( ~ ) s i n  (~ 
p(x) = Tx .dx  . p ,  = jx • dx + p , ,  [22] 

where xt denotes the largest value of x at which [7] is still an adequate approximation and Pt is 
the corresponding pressure. In view of the strong x-dependence of the integrand only the region 
close to X = x contributes strongly to the integral and for sufficiently small values of Ca, ~ is 
virtually constant there. In the small-Ca limit, [22] therefore simplifies to 

( ' )  1 -  7 +pt, [231 p ( x )  = - t ,  u a R o ) s i n  ~o x 
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which in turn simplifies to 

- # UA (q~)sin q~ 
p (x) = [241 

x 

for sufficiently small x. 
Combination of [6] and [24] now leads to 

dq~ = Ca A(~p) 
- - ,  [251 

dx x 

a result also derived by Pismen & Nir (1982) [apart from an erroneous minus sign, see Ngan & 
Dussan (1984)], Hocking & Rivers (1982) and Cox (1986). 

The general solution of [25] may be written 

where 

P(~o) = Ca In x + const, 

1 
p( o) = JA- 5 d~o. 

A series solution is obtainable for P(q~) (Bronshtein & Semendyayev 1973): 

P(~o) = (~o-  sin ~o)+~o tan(-~) 
2 ~ I n - -  

2 

22 , (22"- ' -  1) . /~']2, +, 
,=1 ( 2 n + D ~ ' B "  \ 2 ]  ' 

[26] 

[27] 

[281 

where B, denotes the Bernoulli number, 
oO 

B -  2n  ! E k _ 2 n [29] 
n - -  2 2  n _  17~2n k =  1 

(BI = 1/6, B2 = 1/30, B 3 = 1/42 . . . .  ). The region of convergence of [28] is [0, n]. It is worth 
noting that useful approximations to the functions A (q~) and P(q~) are provided by their small-~o 
limits: 

A(q~)~3/~o 2, P(~o)--,~03/9; ifq~--*0. [30] 

As table 1 shows, these approximations are in practice good ones up to q~-values of about 150°! 

Regime of validity 
An indication of the error in the above, small-Ca solution for the meniscus shape is provided 

by the departure from unity, E, of  the ratio of the left- and right-hand members of  [7], if [25]  is  
inserted for dcp/dx: 

d sin q~-~x 
1 dx 

E= - ]  
- Ca A (~o)sin q~ ( ~ )  

= - -x  2 . d [sinq~A(qo)? 

sin ~oA(q~) dx x 

= - x . d[sin ~0A (~o)]. d_._~ 

sin ~oA (q~) d9 dx 

- Ca d[sin q~A(q~)] 
sin q~ d~o ' 

which, making use of [3], may be written 

[31] 

1 [32]  

[331 

e = Ca E(tp), [34] 
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Table 1. Accuracy of approximations 
[3o1 

tp2A(tp)/3 9p(tp)/tp3 Table 2. Applicability of  approximations [37] 
and [38] 

0 I 1 
n/4 1.02 0.99 tp E(tp) tp3E(tp)/3 nE(~o)/4 
n/2 1.05 0.97 0 oo 1 oo 
3n/4 0.92 0.99 n/4 7.45 1.203 5.85 
5n/6 0.75 1.05 ~/2 1.621 2.094 1.273 
1 in /12 0.46 1.20 3n/4 1.164 5.075 0.914 
n 0 oo n 1.273 13.16 1 

where 

E(~p) = A (~p)[A (tp)sin ~p - 2 cot tp]. [35] 

Evidently the small-Ca solution should provide a good approximation provided 

Ca E(~p) 4 1. [36] 

The large-tp limit 

The function E(tp) possesses simple small- and large-tp limits (table 2): 

E(tp)~3/tp 3, ~--*0 [37] 

and 

E( tp)~4/n ,  tpon.  [38] 

For large tp, E(tp) is constant and, consequently, also E. This provides the clue to a large-tp 
solution of [7], of the same form as [26] but with Ca replaced by a function of  itself, Ca" (see 
[31]): 

P(~0) = Ca' In x + const. [39] 

The function Ca' is found by inserting the differential form of [39], 

dip Ca' A (tp) 
- -  = , [40] 
dx x 

into [7]. The result is 

f i [A  ,sinolt: Ca E4,J Ca' - 1 + Ca' sin tp dtp 

o r  

For large ~0, [42] is 

Since 

the positive root applies: 

Ca'[ - 1 - Ca' E(tp)] = - C a .  

8 I  ( 16Ca)l/21 C a ' =  - 1 _ +  1 +  - . 

[42] 

[43] 

Ca' = 8 I (1  + 16Ca)~/2 - 1].  [45] 

General approximation 

As discussed earlier, [39] covers both the large-~0 and small-Ca limits (in the latter case 
C a ' - , C a  and, consequently, [39]-,[26]) and is a candidate for a generally applicable solution 

Ca ' - ,Ca ,  if Ca- ,0 ,  [44] 
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Figure 7. The dimensionless wedge-angle variation rate 
I(d¢,/~o)/(ds/w)l as a function of ~ for Ca = 1, I0 - t  and 

10-2 (~c-- 14 and ~o0 = 45°). 
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Figure 8. Comparison of the analytical approximation of 
the meniscus equation [13] with the exact solution for ~c = 5, 
I0, 15 and 20 (Ca = 10-~, q)o = 45°). The analytical approxi- 

mation is the uppermost curve. 

to [7] in the wall region. Application of the boundary condition [16b] yields the final form of the 
equation: 

P (cp) -  P(cp0)= Ca' l n ( ~ ) .  [46] 

Comparison with the exact solutions of the meniscus equation 

To indicate the accuracy of  approximation [46], a number of comparisons with numerical 
solutions of[7] and [13] are presented in the axi-symmetric case. 

In figure 8 the model is compared with four numerical solutions (where ~c = 5, 10, 15 and 
20) for moderate values of Ca and ~00, Ca = 10 -I and q~0 = 45°. In the wall region the model 
describes the meniscus shape within about 2 ° . The effect of higher or lower Ca-values is examined 
in figures 9 and 10 (Ca = 1 and Ca = 10 -2, respectively). If  anything, the agreement is better. 
Finally, larger and smaller cp0-values are examined in figures 11 and 12 (cO0 = 0 ° and cO0 = 90 °, 
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~c "5  ~c-10 ~c-15 ~c l~  

I I I I 
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Figure 9. Comparison of the analytical approximation of 
the meniscus equation [13] with the exact solution for ¢c ffi 5, 
10, 15 and 20 ( C a =  1, ~p0ffi45°). In the wall region the 
analytical approximation is indistinguishable from the exact 

solutions. 
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Figure 10. Comparison o f  the analytical approximation o f  
the meniscus equation [13] with the exact solution for ~c = 5, 

10, 15 and 20 (Ca = 10 -2, ~o o ffi 45°). 
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Figure 11. Comparison of the analytical approximation of 
the meniscus equation [13] with the exact solution for ~c = 5, 

10, 15 and 20 (Ca= 10 -l ,  tp0-- 0°). 
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Figure 12. Comparison of the analytical approximation of 
the meniscus equation [13] with the exact solution for ~c = 5, 

I0, 15 and 20 (Ca= 10 -I, tp0 = 90°). 

respectively). For ~P0 = 0° the agreement is only to within about 7 °, but for tp0 = 90 ° the differences 
are minimal. 

8. A N A L Y T I C A L  A P P R O X I M A T I O N  F O R  T H E  E N T I R E  M E N I S C U S  

The central region 

In the central region of the meniscus the viscous stresses are of order I~U/a, while the pressure 
difference between the liquid and gas is of order tr/a. Provided the ratio of these terms, Ca, is small, 
the central portion of the meniscus should have a very nearly spherical profile. The observations 
of Hoffman (1975) for capillary tubes confirm this expectation, surprisingly even for Ca > I. The 
explanation of the latter fact probably lies in the viscous (deviatoric) contribution to the stress at 
the free surface which is negligible in the wall region (section 2) but not at the tube axis. This 
additional contribution will offset that due to pressure variation. Whatever the explanation, 
however, the result is useful and the next task consists of matching this central, circular profile to 
the wall solution [46]. 

Matching of  the wall and central region 

If, consistent with the preceding considerations, viscous normal stresses are neglected in the 
central region, the meniscus equation for the entire region may be written as 

(;: - tr + = P v  + P c ,  [47] 

where Pc denotes the constant pressure in the central region and Pv is the additional pressure due 
to viscous stresses. In the central region the term p, may be neglected, while in the wall region this 
term dominates and R{ ~ and Pc may be neglected. In the transition region all terms are clearly 
significant. 

The simplest matching procedure is to ignore the transition region and treat the central and 
wall approximations as valid up to some transition value of x, xt. The optimal choice of the 
transition point is clearly that at which the errors in the respective approximations are equal, 
i.e. where 

pc + ; Ip, f. [48] 

UMF i7/~=-H 
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For the tube geometry, R 2 is given at xt by c o s  tOt/(a -xt) .  Consequently, p °=  - 2 o  cos tOt/ 
(a - xt) and 

+ ~ = tr cos tO__.___._At . [49] 
Pc I a - x ~ l  

Equation[49] also applies to the parallel-plate system since then R2 = oo and p c = - a  cos tot/ 
(a - x0. An expression for Pv is obtained from the relations for the wall solution, [6] and [40]: 

Ca' A (tO) 
- Pv = tr sin tOt [50] 

Xt 

Making use of [49] and [50], [48] yields the transition criterion: 

x~ Ca' A (tot)l tan tOtl 
a 1 + Ca' A(tO01tan tO~l [51] 

Substitution of[51] into the solution for the wall region, [46] gives 

' I a Ca' A(tot)[tan tot[ 1 [52] 
P(tO,) = e(tO0) + Ca In 7" 1 + Ca' A(tO01tan tOd " 

Given tOo, [52] can be solved iteratively to obtain tOt and hence, via [51], xt. 

The dynamic contact angle 

Defining the dynamic (apparent) contact angle tod as the angle obtained by extrapolating the 
circular profile in the external region to the wall, tod is obtained from tOt and xt by means of  the 
relation 

COS tot 
c o s  tod = - - .  [53]  

1 xt 
a 

Consistent with the definition of tod in the analytical case, in the numerical case tod was taken as 
the angle obtained if the curvature at the tube axis were to persist up to the wall: 

tod= a r c t a n [ ( ~ - 1 ) ' / 2 ] ,  [54] 

for r/c > 0; and 

for r/¢ < O. 

too = 180 ° - a r c t a n [ ( ~ - 1 ) 1 / 2 ] ,  [55]  

9. C O M P A R I S O N  WITH E X P E R I M E N T A L  RESULTS 

The required boundary conditions at the wall 

A comparison of the models developed above with measurements of toa is clearly possible only 
if values of  too and 2 can be specified. Ideally ;t should be assigned a value larger than the range 
of intermolecular forces ( ~ 103 A) but much smaller than the system length scale, a. As pointed 
out by Kafka & Dussan (1979), the corresponding value of too should then be a material property 
in the sense that it depends only on the line speed for the given media. No data on such functional 
dependence of this value of too on U exist, however, and some plausible alternative must therefore 
be sought. 

The simplest model, adopted here, is to suppose that the various classical approximations--the 
continuum and no-slip approximations and the idealization of  a surface tension--retain their 
validity down to a distance from the wall of the order of  a molecular dimension, at which point 
the true contact angle is attained (this concept having no meaning at submoleeular distances). One 
result of  this incorporation of the molecular nature of  the liquid is that the much discussed stress 
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singularity at the contact line does not arise. As discussed earlier, other authors have avoided this 
singularity by retaining the continuum approximation and assuming the no-slip approximation to 
lose its validity close to the contact line. However, the "slip length" required to obtain agreement 
with observed values of tpa then proves to be of the order of a molecular dimension (Lowndes 1980), 
which both undermines the credibility of the continuum treatment and points to a molecular 
explanation. Though unknown to the authors at the time, this approach has also been followed 
by Voinov (1976, 1978). 

To complete the boundary conditions at the wall, the true contact angle there is assumed to be 
sufficiently approximated by the static value 

(P0 = q),. [56] 

This assumption has been made by most authors, though Hoffman (1983) has presented arguments 
for substantial Ca-dependence of the true contact angle. At the large values of Ca at which the 
difference between q~0 and q~s is likely to become appreciable, however, the value of tPd predicted 
by [51]-[53] depends only weakly on (P0. Numerically obtained results of t0d VS q~0 for a few 
Ca-values are shown in figure 13 for ~c = 14. The validity of approximation [56] is thus less crucial 
to the prediction of q~d than it would at first sight appear. (Conversely, good agreement between 
observations and predictions based on approximation [56] furnishes no proof of the accuracy of 
this approximation!) 

Comparisons 
The values of the dynamic contact angle predicted by the analytical approximation [51]--[53] and 

those obtained by numerical solution of the meniscus equation [I 3] can now be compared with those 
found experimentally in tubes [Hoffman (1975) and corroborated by Fermigier & Jenffer (1988)]. 

The resulting comparisons are set out in figures 14-17 for a 2-value of 1 nm. While the best-fit 
value of this length scale cannot be specified to better than a factor of 5 or so, it is certainly of 
the order of a molecular dimension. 

At Ca < 10-1, both models are seen to agree well with the experimental results. For larger Ca, 
the analytical approximation continues to provide an excellent prediction while, paradoxically, 
the model based on the neglect of fewer terms fails. On reflection this result is understandable. 
Both models are reliable in the wall region. In the central region, however, the analytical 
approximation assumes a circular profile which, as discussed in section 8, somewhat fortuitously 
proves to be a better approximation than that obtained taking account of pressure variation but 
neglecting viscous normal stresses. 
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Figure 13. The dependence of the dynamic contact angle 
on the true contact angle at the wall for various Ca 

(~c = 14). 
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Figure 14. Ca-dependence of the dynamic contact angle as 
measured by Hoffman (+), as predicted by the analytical 
approximation equations [51]-[53] ( . . . . .  ) and as predicted 
by the meniscus equation [131 ( ). The liquid used in 
Hoffman's experiments was O. E. Silicone Fluid SF-96 

=0 .958kgm- ' s  -l ,  (T --2.13.10-2Nm -], static con- 
tact angle = 0°). 
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Figure 15. Ca-dependence of the dynamic contact angle as 
measured by Hoffman (+) ,  as predicted by the analytical 
approximation equations [51]-[53] ( . . . . .  ) and as predicted 
by the meniscus equation [13] ( ). The liquid used in 
Hoffman's experiments was Brookfield Std. Viscosity Fluid 
(p = 98.8 kg m -  1 s -  i, e = 2.17' 10 - 2 N m -  i, static contact 

angle = 0°). 
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Figure 16. Ca-dependence of  the dynamic contact angle as 
measured by Hoffman (+) ,  as predicted by the analytical 
approximation equations [51]-[53] ( . . . . .  ) and as predicted 
by the meniscus equation [13] ( ). The liquid used in 
Hoffman's experiments was Ashland Chem. Admex 760 
(~ = 109.3kgm -I s - t ,  a = 4 . 3 8 . 1 0 - 2 N m  -I ,  static con- 

tact angle = 69°). 

10. S Y S T E M - D E P E N D E N C E  OF T H E  D Y N A M I C  C O N T A C T  A N G L E  

The minor influence of system geometry on meniscus shape (and, by implication, on dynamic 
contact angle) has been illustrated in figure 5. The effect of system scale, a, is reflected, for 
a given geometry, in the influence of ~c( = ln(a/2)). Figure 18 illustrates the fact that the dependence 
of the dynamic contact angle on the system scale is similarly weak. The case ~0o = 90 ° has been 
chosen to allow a comparison with the small-Ca prediction of Kafka & Dussan (1979). 

The figure equally demonstrates the weak dependence, for a given system, of the dynamic contact 
angle on the length scale 2. 
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Figure 17. Ca-dependence of the dynamic contact angle 
as measured by Hoffman (+) ,  as predicted by the 
analytical approximation cquations[51]-[53] ( . . . . .  ) and 
as predicted by the meniscus equation [13] ( ). The 
liquid used in Hofl'man's experiments was Santicizer 405 

ffi 11.2 kg m -  i s -  t, cr = 4.34" 10- = N m -  L, static contact 
angle ffi 67°). 
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Figure 18. The dependence of the dynamic contact angle on 
the system scale (represented by {=) as predicted by meniscus 
equation [13] ( ) and by Kafka & Dussan (symbols), 
for various Ca and ~0 = 90°. At  {= ffi 14 both models are 

made to agree. 
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11. CONCLUSIONS AND FINAL DISCUSSION 

An alternative to full numerical solution of the flow and meniscus shape associated with an 
advancing liquid-gas contact line has been explored, based on a local-wedge approximation. Up 
to Ca ,~ 10-t the associated errors are acceptable over the entire meniscus, as supported by the 
excellent agreement with available numerical solutions. At higher Ca, for which viscous stresses 
become significant in the central region of the meniscus, only the wall region is adequately described 
by the approximation. Good agreement with measured values of the advancing contact angle is 
nevertheless obtained if the wall profile is matched to a circular central profile. This leads to an 
analytical approximation for the dynamic contact angle, applicable at all. 

Since the local-wedge approximation involves no assumption as to the sign of the line speed it 
should be applicable in the liquid-gas receding case and can probably be extended to the 
liquid-liquid case also (which involves both advancing and receding liquids). Indeed, in these cases 
Ca-values are likely to be limited to order 10-1 or less, a film of the receding liquid being left behind 
at larger Ca. 

The question of the appropriate boundary conditions at the solid surface remains unsettled, the 
only contribution of the present work being to demonstrate that boundary conditions taking 
account of the discontinuous nature of the liquid but retaining the no-slip approximation are as 
successful in removing the wall singularity and in predicting the dynamic contact angle as are the 
reverse assumptions. However, neither these assumptions nor that of constant true contact angle 
are severely tested in the advancing case, the predicted dynamic angle being relatively insensitive 
to conditions at the wall. It is noteworthy that this will not be so if the liquid is receding and 
comparisons of predictions and experiment in this case should be highly illuminating. 

Finally, we note that the model developed predicts a weak system-dependence of the dynamic 
contact angle (e.g. tube-radius-dependence: [51]-[53]) which cannot, as noted by Kafka & Dussan 
(1979), be viewed as a material property. 
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